Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Methods Mol Biol ; 2511: 375-394, 2022.
Article in English | MEDLINE | ID: covidwho-1941391

ABSTRACT

Machine learning is being employed for the development of diagnostic methods for several diseases, but prognostic techniques are still poorly explored. The development of such approaches is essential to assist healthcare workers to ensure the most appropriate treatment for patients. In this chapter, we demonstrate a detailed protocol for the application of machine learning to MALDI-TOF MS spectra of COVID-19-infected plasma samples for risk classification and biomarker identification.


Subject(s)
COVID-19 , Biomarkers/analysis , COVID-19/diagnosis , Humans , Machine Learning , Proteins , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
2.
Methods Mol Biol ; 2511: 175-182, 2022.
Article in English | MEDLINE | ID: covidwho-1941375

ABSTRACT

Matrix-assisted laser desorption/ionization source coupled with time-of-flight mass analyzer mass spectrometry (MALDI-TOF MS) is being widely used to obtain proteomic profiles for clinical purposes, as a fast, low-cost, robust, and efficient technique. Here we describe a method for biofluid analysis using MALDI-TOF MS for rapid acquisition of proteomic signatures of COVID-19 infected patients. By using solid-phase extraction, the method allows the analysis of biofluids in less than 15 min.


Subject(s)
COVID-19 , Proteomics , Biomarkers , COVID-19/diagnosis , Humans , Proteomics/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
3.
J Oral Microbiol ; 14(1): 2043651, 2022.
Article in English | MEDLINE | ID: covidwho-1713457

ABSTRACT

BACKGROUND: The SARS-CoV-2 infections are still imposing a great public health challenge despite the recent developments in vaccines and therapy. Searching for diagnostic and prognostic methods that are fast, low-cost and accurate are essential for disease control and patient recovery. The MALDI-TOF mass spectrometry technique is rapid, low cost and accurate when compared to other MS methods, thus its use is already reported in the literature for various applications, including microorganism identification, diagnosis and prognosis of diseases. METHODS: Here we developed a prognostic method for COVID-19 using the proteomic profile of saliva samples submitted to MALDI-TOF and machine learning algorithms to train models for COVID-19 severity assessment. RESULTS: We achieved an accuracy of 88.5%, specificity of 85% and sensitivity of 91.5% for classification between mild/moderate and severe conditions. When we tested the model performance in an independent dataset, we achieved an accuracy, sensitivity and specificity of 67.18, 52.17 and 75.60% respectively. CONCLUSION: Saliva is already reported to have high inter-sample variation; however, our results demonstrates that this approach has the potential to be a prognostic method for COVID-19. Additionally, the technology used is already available in several clinics, facilitating the implementation of the method. Further investigation using a larger dataset is necessary to consolidate the technique.

SELECTION OF CITATIONS
SEARCH DETAIL